Ground-level NO₂ Concentrations Inferred from OMI

Lok Lamsal, Dalhousie University
Randall Martin, Dalhousie and Harvard-Smithsonian
Aaron van Donkelaar, Dalhousie University

Martin Steinbacher, Empa

Edward Celarier, SGT Inc.

Eric Bucsela, NASA GSFC

Edward Dunlea, CIRES

Joseph Pinto, EPA

Large Regions Have Insufficient In Situ NO₂ Measurements for Air Quality

NO₂ Toxic Pollutant Associated with Mortality In Situ Monitors Contaminated with Reactive Nitrogen

Highest NO₂ maximum quarterly mean by county, 2001

OMI Tropospheric NO₂ Column Proxy for Surface Concentration

Tropospheric NO₂ Column Strongly Related to Ground-level Concentration over Land

Texas AQSMartin et al., 2004

ICARTT

Martin et al., 2006

Approach to Infer Surface NO₂ from OMI

OMI Tropospheric NO₂ Column

GEOS-Chem NO₂ Profile

OMI Local Information

$$S_{\mathrm{OMI}} = \Omega_{\mathrm{OMI}}(i)$$

$$\mathbf{S}_{ ext{GEOS-Chem}} \left(\begin{array}{c} \Omega_{ ext{OMI}}(i) \\ \overline{\Omega}_{ ext{OMI}} \end{array} \right)$$

$$\frac{\Omega_{\rm OMI}}{\Omega_{\rm GEOS\text{-}Chem}} + \left(\Omega_{\rm OMI}(i) - \overline{\Omega_{\rm OMI}}\right)$$

 $\mathbf{S} \rightarrow \text{Surface NO}_2$

 $\Omega \rightarrow \text{Tropospheric NO}_2 \text{ column}$

100% error in GEOS-Chem surface NO₂

→ < 10% error in derived surface NO₂ in polluted areas

Surface NO₂ for 2005 Inferred from OMI (standard product)

Correction for Interference in "NO₂" in Air Quality Networks

Compounds	Conversion efficiency	Experiments
NO ₂ , ethyl nitrate	~ 100%	Winer et al., 1974
PAN	92%	Winer et al., 1974
HNO ₃ , PAN, n-propyl nitrate, n-butyl nitrate	≥98%	Grosjean and Harrison, 1985
Ammonia, gas phase olefins, NO ₃ -	Insignificant	Dunlea et al., 2007

Difficult issue: Loss of HNO₃ on stainless steel of inlet

Infer 35% measured from comparison with photolytic converter

Correction Calculated with GEOS-Chem

Correction=
$$\frac{NO_2}{NO_2 + Alkyl \text{ Nitrates} + 0.95PAN + 0.35HNO_3}$$

Significant Correlation Between Corrected In Situ and OMI-derived Surface NO,

Correlation of Concident Observations over 2005

Comparison of In Situ and OMI-derived Surface NO₂ for 2005 Indirect Validation of OMI

Investigation of Seasonal Bias

Conclusions

Promising satellite-based surface NO₂ estimate

Need for additional validation of surface NO₂ with "true" NO₂

Surface measurements provide indirect validation of NO₂ columns

Acknowledgement

Supported by NASA ROSES